

# **Locking Module**

Module to control Rubidium Oscillator or OCXO from a GPS receiver with 1pps output

CQuartzlock

### Quartzlock

### A6-1PPS Locking Module

#### SPECIFICATION

#### INPUTS

- a) 1pps from GPS receiver, time mark positive edge, width 10us to 1ms, TTL/CMOS
- b) 10MHz from controlled oscillator, sine wave 0 dBm or logic TTL/CMOS 50% mark/space

#### OUTPUTS

- a) 1pps derived from 10MHz input. 5v CMOS/TTL, width 10us, time mark positive edge.
  Default in coincidence with mean value of incoming 1pps time mark. May be offset +/-500ms in steps of 1ns.
- b) Analogue voltage for frequency adjustment of rubidium/OCXO. Limits 0V lower limit and 5V to 8V(adjustable) upper limit. 20 bits effective resolution.

#### TRACKING PERFORMANCE

Performance depends upon quality of 1pps input. Typical with Trimble Resolution-T GPS receiver (predicted from simulation):-

| Steady state control   | lling Rubidium oscillator:    |                       |
|------------------------|-------------------------------|-----------------------|
| Allen variance:        | 1 sec to 1000sec              | no effect on Rubidium |
|                        | 10,000 sec                    | 2x10-13               |
| Steady state control   | lling OCXO                    |                       |
| Allen variance         | 1sec to 100sec                | no effect on OCXO     |
|                        | 1000 sec                      | 2x10-12               |
|                        | 10000 sec                     | 8x10-13               |
| From switch on con     | trolling rubidium oscillator: |                       |
| Initial frequency offs | et 2x10-10                    |                       |
|                        | time to within 10-11:         | 4 minutes             |
|                        | time to within 10-12          | 20 minutes            |
|                        |                               |                       |

(These times do not include any initialisation or self survey delays in the GPS receiver)

#### OTHER ELECTRICAL

| Power Supply:       | 5V DC (to be verified)                                                                            |
|---------------------|---------------------------------------------------------------------------------------------------|
| Power consumption:  | 0.1W                                                                                              |
| Computer interface: | serial: RS-232 9600baud                                                                           |
| Receiver interface: | serial: RS-232 9600baud                                                                           |
| Status indicators   | 10MHz fail<br>no/bad 1pps<br>holdover mode<br>ready ( frequency error less than programmed limit) |

#### OTHER:

| Size(without 10MHz oscillator) |  |
|--------------------------------|--|
| Weight:                        |  |
| Operating temperature:         |  |
| Connector:                     |  |
|                                |  |

25x25x5mm TBD -20/+40 degC TBD

SERVICE:

**OPTIONAL:** 

closed case diagnostics and calibration using Windows software package

Third RS-232 serial interface for control of a rubidium that has digital frequency control

## Module to control Rubidium Oscillator or OCXO from a GPS receiver with 1pps output

#### **GENERAL DESCRIPTION**

The module uses a three state Kalman filter algorithm to measure and correct the frequency offset of the oscillator with respect to the 1pps input.

- a) A time tagging circuit which time tags the incoming 1pps with a resolution of 200ps, and an inherent jitter of < 1ns rms. The internal clock analogue interpolator is self calibrating.
- b) An interface to the GPS receiver decodes messages and extracts relevant information, such as time correction data for the 1pps output.
- c) A 1pps output which has the short term stability of the rubidium/ OCXO (jitter <100ps RMS). This output may be steered into time coincidence with GPS time/UTC. Steering resolution is 1ns.
- d) Holdover mode is initiated by failure of the 1pps input, or by reception of appropriate data from the GPS receiver that indicates that the 1pps is inaccurate. During holdover measured values of frequency offset and drift is used to steer the oscillator. The output 1pps will still be available.
- e) A comprehensive computer interface that can be used to monitor the progress of the Kalman filter, and to set parameters for the type of oscillator to be controlled. Communication with the GPS receiver is possible through the single interface. Operating parameters are stored in non volatile memory.



### Quartzlock

 

 Savallable available (Control of the second state of th