

IC TEST SYSTEM

Product group

Near-field microprobes

(ICR probes)

1. Near-field microprobes (ICR probes)

- 1.1 Field of application
- 1.2 Design and terminology
- 1.3 Probe types overview
- 1.4 Probe characteristics

2. IC scanner

The IC scanner is a modular device system with near-field microprobes for the automatic measurement of electric and magnetic near fields on die surface, bond wires and IC-pins.

Apart from the holder for the near-field microprobes, the system includes a 4-axis positioning system to guide the microprobes, a motor controller with cables to connect the device and the modular software. The system works directly with a PC and a spectrum analyzer via USB interfaces.

The system's components are:

- 1. Mover with 3 linear axes (x, y, z) or optionally 4 axes (x, y, z) and α rotation)
- 2. TB 1022 test board (GND plane, DUT holder and Connection board)
- 3. Motor controller to drive the mover
- 4. Spectrum analyzer
- 5. PC with ChipScan control and operating software

3. ChipScan software

The software comprises components to operate and control the entire measuring set-up. The devices are centrally managed and controlled. The mover can be controlled with a program. The measuring algorithms are carried out in an interactive mode and the results of the measurement are shown in a three-dimensional graphic. The measured data can be exported and used for other applications.

The measuring algorithms are freely programmable scans based on scripts which can be generated by the user.

Predefined measuring algorithms include:

- point scan (ptp scan)
- line scan (continuous scan)
- surface scan
- volume scan

1.1 ICR probes

Field of application

The near-field microprobes developed by LANGER EMV-Technik can be used to measure magnetic or electric near fields with a high resolution and sensitivity. The probes are suitable for field measurements on ICs.

The dimensions of the near-field microprobes (ICR probes) are in the micrometer range. Thanks to their design and small size, they can be used to separately examine electrical (E-) and magnetical (H-) fields on ICs (die surface, bond wires, pins). They move approximately 20 μ m above the respective device under test. E- and H- near fields can be detected separately at a high resolution.

The near-field probes are microprobes which can no longer be guided by hand but have to be moved by a computer-controlled mover due to their high resolution and sensitivity.

The E and H probes are mounted at the tip of the probe - the probe's head. An amplifier is integrated in the probe case.

The probe holder can alternatively be adapted to the customer's existing mover or robot systems on request.

The technical data sheets of the ICR probes show typical sets of characteristics.

Near-field microprobes can be delivered for a wide variety of measurement tasks that have to be carried out during development work. The portfolio of products thus allows the user to make an optimum choice for a wide range of practical measurement purposes.

1.2	Design and terminology		
ick probes			
ICR near-field mid The ICR probe cor - probe case with i - clamping bolt and - probe tip with pro	c roprobe nsists of: ntegrated amplifier, d adjusting screws, be head.	Optional probe holder	RF-OUT and DC-IN SMA connector
Power supply: - via LANGER BT	706 Bias-Tee	Adjusting screw	power supply over LANGER BIAS-TEE BT 706 Constants
Note: Due to its design t thus delivered with	he ICR probe is sensitive to shocks and a transport and handling protective cap.	x-direction Adjusting screw y-direction	Probe tip with probe head
Clamping screw: To fit the enclosed system.	probe holder or alternative adjusting	ICR pro ICR HH 10 6 GHz LAN EMV.	Clamping screw be 00 - 6 IGER Technik
Adjusting screw of To adjust the probe and position the pr - The adjustment p	1: e head in the centre of the rotary unit obe tip in the x-direction wath in the x-direction is +/- 1 mm.	Setting screw to adjust the probe tip in	+/- x- direction
Adjusting screw 2 To adjust the probe and position the pr - The adjustment p	2: e head in the centre of the rotary unit obe tip in the y-direction wath in the y-direction is +/- 1 mm.	Setting screw to adjust the probe tip in +/- y- direction	Paly over -y

	1.2
ICR	probes

Probe tip ICR probe The probe tip protrudes from the amplifier case and allows optical positioning of the ICR probe above the DUT. ICR Probe head 6 GHz The probe head is the sensing element of the near-field microprobe. Horizontal and vertical probe heads with different inside diameters are available for measuring the magnetic field. Probe head **Probe protection** - without protection Probe head (ideal for positioning with IC scanner) The probe head gets closer to the object to be measured and can measure higher signal intensities. The probe head is more easily visible and can be positioned more precisely relative to the object to be measured. - with protection Probe head (ideal for manual positioning) The probe head is reinforced with a resin. This enhances the probe tip's stability and prevents the probe head from being damaged. Resin BT 706 Bias-Tee Power is supplied to the integrated amplifier via the biastee. Bias-Tee **BT 706** This BT 706 has an impedance of 50 ohm and stabilises the current (9 V, 100 mA) for the ICR probe. 12 V / DC Frequency range: 500 kHz to 6 GHz Connection: SMA connector Plug-in power supply unit 12 V / 70 mA Note: The bias tee from LANGER EMV-Technik GmbH features integrated voltage stabilisation at 9 V. The ICR probes can thus only be used with this bias tee.

1.3 ICR probes

Probe types	Inside diameter	Orientation	Measuring range
ICR HV 100-27	100 um		1.5 MHz to 6 GHz
ICR HV 100-6		Vertical	2.5 MHz to 6 GHz
ICR HH 100-27	100 um	H horizontal	1.5 MHz to 6 GHz
ICR HH 100-6			2.5 MHz to 6 GHz
ICR HV 150-27	150 μm	H vertical	1.5 MHz to 6 GHz
ICR HV 150-6			2.5 MHz to 6 GHz
ICR HH 150-27	150 um		1.5 MHz to 6 GHz
ICR HH 150-6	100 μπ	TIONZONIA	2.5 MHz to 6 GHz
	1		
ICR HV 250-75	- 250 um	H vertical	500 kHz to 2 GHz
ICR HV 250-6	p		2.5 MHz to 6 GHz
ICR HH 250-75	250 um	H horizontal	500 kHz to 2 GHz
ICR HH 250-6	230 μΠ		2.5 MHz to 6 GHz
ICR HV 500-75	- 500 um		200 kHz to 1 GHz
ICR HV 500-6		Vertical	2 MHz to 6 GHz
ICR HH 500-75	500 um	H	200 kHz to 1 GHz
ICR HH 500-6	- 500 µm	nonzontar	2 MHz to 6 GHz
			1
ICR E 150	150 µm x 35 µm	E horizontal	7 MHz to 3 GHz

	1.4
ICR	probes


```
1.4
ICR probes
```


1.4 ICR probes

1	
2	


```
1.4
ICR probes
```


	1.4
ICR	probes

1.4 ICR probes

1.4 ICR probes

Probe characteristics ICR E 150

The characteristics show the dependence of the probe position s (x, y, z) relative to the space, probe angle α and signal frequency f of the ICR E 150 E-field microprobe.

2.	Scanner ICS 103				
IC scanner		1			
 Application: Scan the DUT su Move the E and I with high solution System compone 4-axes mover (x, Test board with Ground plane C Connection boa optional universa Software ChipSc Properties: The IC scanner can different ICR probe and H-near fields. moved above the othere axes and arc The scanner allow the position of the through a microsce The Software Chipse 	Inface H field probes a of micrometers ent parts: y, z, α) GND 22 and ard al holder UH-DUT an an be adapted with es to measure E- The probes can be chip surface in all bund the z-axis. rs the user to check probe tip visually ope. introlled via PC with Scan.	ICR probe		4-axes	mover
Axes		Х	у	Z	α-rotation

Axes	Х	У	Z	α-rotation
Max. measuring range	25 mm	25 mm	25 mm	+/- 180°
Accuracy	10 µm	10 µm	100 µm	1°
Repeatability	+/- 1 μm	+/- 1 µm	+/- 1 µm	+/- 1°
Max. speed	5 mm/s	5 mm/s	5 mm/s	90°/s

Control	USB
Supply voltage	110 / 230 V
Dimension / total weight	(320 x 220 x 270) mm / 4.35 kg

Software:	ChipScan - zero position, manual or script-based probe movement - visualisation of the measuring results in 2 D or 3 D - output as excel data
optional Accessories:	 Near-field microprobes for E and H fields Video inspection microscope with holder
Scope of delivery:	 IC scanner ICS 103 Control and supply unit with link cable Ground plane or UH-DUT Software ChipScan

3. ChipScan

The IC scanner from Langer EMV-Technik is operated and controlled with the modular "ChipScan" program system. The device manager initialises the connected measuring and control devices when the program is started. After this the measurement data ranges can be set for the spectrum analyser and the positioning system via the program's user interface. The command control set (script) is now started to execute the measuring algorithms. All measurements are carried out automatically. The measured data can be displayed in the visualisation area in real time.

Graphical User Interface (GUI) of the modular "ChipScan" program system

Areas of the user interface:

- Menu bar
- Spectrum analyser setup to set up the device via the user interface
- Graphic joystick to manually guide the positioning device (x, y, z, α) (Options: setting the step width in μm and degrees)
- Spectrum analyser measure for individual measurements
- Script window and start button for scripts
 (Command scripts for mover control and measuring algorithms)
- 6 Output window for program messages and alphanumeric script output
- Visualisation range for 2D and 3D graphics of the measuring results (Options in the View and Visualisation menu)

-This product complies with the requirements of the following European Community Directives: 89/336/EC (Electromagnetic Compatibility) and 73/23/EC (Low Voltage) as amended by 93/68/EC (CE-Marking).

Safety precautions

- When using the near-field microprobes please observe the following basic safety instructions to protect the near-field microprobes against the risk of injury:
- Read and comply with the operating manual.
- Keep the operating manual in a safe place for subsequent use.
- Follow the safety instructions and warnings on the unit.
- Always perform a visual check of the near-field microprobes before use.
- Keep hands away from probe tips.
- Do not leave the IC scanner with near-field microprobes unsupervised.
- Read the explanation of the symbols on the probe case and in the operating manual.
- The near-field micro probe has been designed for IC measurements of magnetic or electric field. Any other use is not permitted.
- Do not switch the IC scanner with ICR probes on until it has been completely assembled.
- Damaged connection cables are extremely dangerous!

Safety symbol

This CAUTION symbol indicates a potentially hazardous situation which could result in minor or moderate injury or damage to the near-field micro probes if ignored. This symbol indicates that the operator must refer to an explanation in the operating instructions.

The warranty is only valid under the following conditions:

- the near-field microprobes have been treated properly,
- the operating instructions have been followed,
- for maintenance only original parts have to be used,
- external components like video microscope, spectrum analyzer, motor control unit seperate warranty terms of the relevant manufacturer apply.

The warranty is forfeited if:

- attempts have been made to repair the near-field microprobe,
- the near-field microprobe has been altered,
- the near-field micro probe has been used incorrectly.

ICR probes	Safety instructions
- The near-field mi used for delivery One probe case Each ICR probe	icroprobes' (ICR probes') original packaging is a special case that is also /. contains 1 to 3 ICR probes according to the options ordered. is provided with a protective cap.
- The protective ca	ap is labelled:
"Never, und	er any circumstances, touch the probe tip!"
- Always insert the locked in place.	e ICR probe into a probe holder or IC scanner with the probe's cap
- Move the probe I the z-axis before	holder or IC scanner manually to its maximum height position on inserting the ICR probe.
- Only remove the This is particularl	protective cap just before you start to prepare an automatic measurement. y true when approaching the DUT starting position.
- Return the probe the z-axis at the	e holder or IC scanner manually to its maximum height position on end of each automatic measurement or if it is in the idle state.
Then fit and lock	the ICR probe's protective cap.
 Only transport a Proceed accordin Bring the prob Fit and lock the or an IC scann Place the reme 	probe mover or probe holder with the ICR probe removed. ng to the following sequence when removing the probe: e mover into its maximum height position by hand. e protective cap before removing the ICR probe from the probe holder ner. oved ICR probe into the probe case.

Fax:

email: m

IC TEST SYSTEM

Nöthnitzer Hang 31

Germany 01728 Bannewitz Phone: +49 (351) 43 00 93 – 0 CERTIFICATE OF CALIBRATION

Cert. No. 090210QSHH150

This Probe has been indiviually calibrated using the following procedure for monitoring the RF function:

+49 (321) 43 00:93 - 22 mil@linger-env.de

Publication: Magnetic Near Field Probe

Calibration Procedure: LACPHH150 Uncertainty: +/- 1.5 dB

Date of Cal.:Jan 10, 2009Date Due:Jan 09, 2010

Cal. Interval: 12 months

 Model:
 ICR HH150

 Serial:
 #999#999

Manufacturer: Langer EMV–Technik

Temperature: 21°CHumidity:50 %

Test and Measurement Equipment

ManufacturerModelSerialDue DateRohde & SchwarzFLS-61004072010/03/30TG = $100dB\mu V$, Att = 5dB, RBW = 1MHz, VBW = 100kHz, SWT = 120ms, normalized

C - Storge

Dipl.-Ing. C. Stange Development

LANGER EMV-Technik GmbH Nöthnitzer Hang 31 DE-01728 Bannewitz

This calibration is in compliance with the International EMC Standard of ICs IEC 61967. Supporting Documentation relative to traceability is on file and available for examination upon request.

This certificate shall not be reproduced except in full without the written approval of Langer EMV-Technik.