

Audit Survival Guide

We recommend you store the calibration documentation and this guide in a safe and accessible location. Your auditor requires the calibration documentation for all audits.

UCATE the instrument calibration information. The auditor needs to review the following documentation.

CALIBRATION CERTIFICATE

Every instrument comes standard with a calibration certificate.

CALIBRATION STICKER

The instrument has a calibration sticker located on the top corner showing the last calibration date and calibration due date.

DID YOU KNOW?

Associated Research Inc. is an A2LA Accredited Laboratory with the capability to perform calibrations to numerous requirements. All calibration measurements traceable to NIST.

Standard Calibration Options:

- Standard Calibration Verifies your instrument is functioning properly and includes a calibration certificate.
- Standard Calibration with Data

 Includes before (as received)
 data and after (as returned)
 data along with a calibration certificate.

Accredited Calibration Options

- ISO 17025
- ANSI Z540.1-1994
- CTL Specification Sheet DSH 251B
- Denan's Law

FY GROUND CONTINUITY PASS/

VERIFY your instrument is working properly. The auditor wants to see that you know how to test that the instrument is functioning.

Required Equipment

Resistor Value	Resistor Specification
120kΩ	2.5KVac / 50W / 1%
2ΜΩ	2.5kVAC/3W/ 1%
0.5Ω	350VDC/2W/ 5%
2Ω	350VDC/2W/ 5%

Or use the TVB-2 box shown in the example below.

STEP 1.

Set parameters for Hipot PASS and FAIL Conditions

Note: Setting may vary depending on the application.

Hipot PASS/FAIL recommended settings Voltage 1240 VAC, 2121 VDC 10mAAC, 5000 uADC Current 2 sec ramp up and 2 sec dwell Test Time

Connect leads for Hipot PASS Condition

A. Connect the high voltage lead from the HV terminal on the instrument to the ACW/DCW PASS terminal on the TVB-2.

B. Connect the return lead from the RETURN and SENSE- terminals on the instrument to the RETURN terminal on the TVB-2.

TEST

STEP 3.

Press the TEST button

TEST

The instrument will indicate a PASS and the TEST button will illuminate.

Connect leads for Hipot FAIL Condition

C. Connect the high voltage lead from the HV terminal on the instrument to the ACW/DCW FAIL terminal on the TVB-2.

D. Connect the return lead from the RETURN and SENSEterminals on the instrument to the RETURN terminal on the TVB-2.

STEP 5.

Press the **TEST** button

Check for Failure

The instrument will indicate a failure, sound an audible alarm and the RESET button will illuminate.

STEP 1.

Set parameters for Ground Continutity PASS and FAIL Conditions

Note: Setting may vary depending on the application.

Continuity PASS/FAIL recommended settings	
1Ω	
2 sec ramp up and 2 sec dwell	

Connect leads for Ground Continuity PASS Condition

TEST button

A. Connect the CURRENT and SENSE+ terminals on the instrument to the GC PASS terminal on the TVB-2.

B. Connect the RETURN and SENSE- terminals on the instrument to the RETURN terminal on the TVB-2.

STEP 3.

Press the TEST button

The instrument will indicate a PASS and the TEST button will illuminate.

Connect leads for Ground Continuity FAIL Condition

C. Connect the CURRENT and SENSE+ terminals on the instrument tot he GC FAIL terminal on the TVB-2.

STEP 4.

D. Connect the RETURN and SENSE-terminals on the instrument to the RETURN terminal on the TVB-2.

STEP 6. Press the

Check for Failure

The instrument will indicate a failure, sound an audible alarm and the RESET button will illuminate

HOW OFTEN SHOULD YOU RUN A VERIFICATION SEQUENCE?

It depends upon how often the instrument

If used infrequently, run a verification sequence before each use.

In a production environment, verification should be run daily at minimum.

In a high volume production environment, we recommend you run a verification test for every shift. This will ensure that if there is a problem, the number of products that need to be re-tested is limited.

3 TEST with your instrument. The auditor wants you to show how to run a typical test.

Below is a common test procedure example for running a routine Continuity and Hipot test:

STEP 1.

Select the proper memory location for the routine test sequence.

Connect the device under test

A. Connect the black return lead (part #38490) to the front panel RETURN and SENSE– terminals and connect the other end of the lead to the dead metal chassis of the DUT.

B. Connect the red lead (part #38490) to the front panel CURRENT and SENSE+ terminals and connect the other end to the ground pin of the power cord of the DUT.

C. Connect the high voltage lead (part #38489) to the front panel HV terminal and connect the other end of the lead to the line and neutral of the power cord of the DUT.

TEST

STEP 3.

Run the sequence

Press the TEST button and run the test sequence. Disconnect the leads when the sequence is finished.

For more calibration & inspection details, please visit us at arisafety.com/support/product-service.aspx

